ProNGF, NGF and their receptors in tumour innervation and progression: a study in breast and thyroid cancers.

Sam Faulkner

B. Biomed Sci (Hons) (Newcastle)

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy in Molecular Biochemistry

School of Biomedical Sciences and Pharmacy

The University of Newcastle, Australia

September 2017

Declarations

TESTIMONY OF ORIGINALITY

I hereby certify that the work embodied in the thesis is my own work, conducted under normal supervision. The thesis contains no material which has been accepted, or is being examined, for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University's Digital Repository, subject to the provisions of the Copyright Act 1968 and any approved embargo.

THESIS BY PUBLICATION

I hereby certify that this thesis is in the form of a series of papers. I have included as part of the thesis a written statement from each co-author, endorsed in writing by the Faculty Assistant Dean (Research Training), attesting to my contribution to any jointly authored papers.

Signature:

Date: 29/09/2017

Sam Faulkner

dd/mm/yyyy

Acknowledgements

Firstly, I would like to thank my supervisor Professor Hubert Hondermarck for giving me the opportunity to complete my PhD under your expert supervision. Thank you for providing me with a positive environment, ongoing support as well as your friendship and humour over the last four years. Despite being one of the most challenging experiences to date, I will always look back on this time with fond memories.

I would also like to thank Doctor Severine Roselli for her expert guidance, patience and friendship during this time. I accredit a lot of the knowledge and fundamental lab skills I now possess to your careful and well thought out teachings.

To my lab partners Jay Pundavela and Sheridan Keene, thank you for your assistance, guidance and unwavering willingness to help at any given time, despite me constantly interrupting your own work. Your support was essential to the completion of this thesis and was always very much appreciated.

To my parents, Steve and Lee, I am forever thankful for the love, support and fantastic opportunities that you have both provided and continue to provide me with on a daily basis. I most certainly would not have accomplished this feat without either of you.

To my beautiful (and very patient) partner Aleisha, you have been in the passenger seat for the entirety of this journey, experienced the rollercoaster that was the PhD and despite all of this continued to love and support me (physically, emotionally and at times financially) through it all. You truly are an amazing person whose laughter could always light up even the darkest of days. I love you and cannot wait to see what the future has in store for us both.

Finally to the rest of my family and friends, I would also like to thank you for supporting me during this time and for making life the wonderful adventure and experience that it is and will hopefully continue to be for many years to come.

List of Publications Included as Part of this Thesis

Boilly B*, <u>Faulkner S*</u>, Jobling P, Hondermarck H: **Nerve Dependence: From Regeneration to Cancer**. *Cancer Cell*. 2017 Mar 13;31(3):342-354.

* Co-first author

Pundavela J, Roselli S, <u>Faulkner S</u>, Attia J, Scott RJ, Forbes JF, Bradshaw RA, Walker MM, Jobling P, Hondermarck H: **Nerve fibers Infiltrate the tumor microenvironment and are associated with nerve growth factor production and lymph node invasion in breast cancer**, *Mol Oncol.* 2015 Oct;9(8):1626-35.

<u>Faulkner S</u>, Roselli S, Demont Y, Pundavela J, Choquet G, Leissner P, Oldmeadow C, Attia J, Walker MM, Hondermarck H: **ProNGF is a potential diagnostic biomarker for thyroid cancer**. *Oncotarget*. 2016 May 10;7(19):28488-97.

<u>Faulkner S</u>, Jobling P, Rowe C, Rodriguez-Oliveira S, Roselli S, Thorne R, Oldmeadow C, Attia J, Jiang CC, Zhang XD, Walker MM, Hondermarck H: **Neurotrophin Receptors TrkA, p75^{NTR} and Sortilin are Increased and Targetable in Thyroid Cancer**. *Am J Pathol.* 2018 Jan;188(1):229-241.

List of Abbreviations

0-9

60HDA	6-Hydroxydopamine
0011071	onyaroxyaopaninio

Α

ATCC	American Type Culture Collection
AA	Amino Acid
ANOVA	Analysis of Variance
ATC	Anaplastic Thyroid Carcinoma
AGR	Anterior Gradient Protein
AUROC	Area Under the Receiver-Operating Characteristic Curve

В

BMP	Bone Morphogenetic Protein
BDNF	Brain-Derived Neurotrophic Factor

С

CSC	Cancer Stem Cell
CNS	Central Nervous System
CI	Confidence Interval
CRD	Cysteine-Rich Domain

D

DD	Death Domain
DNA	Deoxyribonucleic Acid
DAB	3,3'-Diaminobenzidine
DRG	Dorsal Root Ganglia
DCIS	Ductal Carcinoma In Situ
DMEM	Dulbecco's Modified Eagle Medium

Ε

EGF	Epidermal Growth Factor
ER	Estrogen Receptor

S. Faulkner

ECM	Extracellular Matrix
ERK	Extracellular Signal-Regulated Kinase

F

FGF	Fibroblast Growth Factor
FNAB	Fine Needle Aspiration Biopsy
FCS	Foetal Calf Serum
FTC	Follicular Thyroid Carcinoma

G

GDNF	Glia-Derived Neurotrophic Factor
GAPDH	Glyceraldehyde-3-Phosphate Dehydrogenase
G-CSF	Granulocyte-Colony Stimulating Factor

Н

HER2	Human Epidermal Growth Factor Receptor 2
HME	Human Mammary Epithelium

I

lgG	Immunoglobulin G
IHC	Immunohistochemistry
IR-Dye	Infrared Dye
IDC	Invasive Ductal Carcinoma
ILC	Invasive Lobular Carcinoma

J

κ

kDa Kilodalton

Μ

MTC Medullary Thyroid Carcinoma

mRNA	Messenger Ribonucleic Acid
MAPK	Mitogen-Activated Protein Kinase
MW	Molecular Weight

Ν

NGF	Nerve Growth Factor
NGFR	Nerve Growth Factor Receptor
NT	Neurotrophin
NT-3	Neurotrophin-3
NT-4/5	Neurotrophin-4/5
NTRK1	Neurotrophin Tyrosine Receptor Kinase 1
nAG	Newt Anterior Gradient
NFkB	Nuclear Factor-кВ

Ρ

p75 ^{NTR}	p75 neurotrophin receptor
PTC	Papillary Thyroid Carcinoma
PNI	Perineural Invasion
PBS	Phosphate Buffered Saline
PI3K	Phosphoinositide-3-Kinase
PLCγ	Phosphoinositide Phospholipase C Gamma
PDGF	Platelet-Derived Growth Factor
PCR	Polymerase Chain Reaction
PTR	Post-Translational Modification
proNGF	Precursor of NGF
PR	Progesterone Receptor
PGP9.5	Protein Gene Product 9.5

Q

qRT-PCR Quantitative Reverse Transcription Polymerase Chain Reaction

R

ROC	Receiver-Operating Characteristic
RTK	Receptor Tyrosine Kinase
RAC	Rho GTPase
RNA	Ribonucleic Acid
RPMI	Roswell Park Memorial Institute Media

S

siRNA	Small/Short Interfering RNA
SHH	Sonic Hedgehog
SORT	Sortilin
SAS	Statistical Analysis System

т

TPA	Tetradecanoyl Phorbol Acetate
TCGA	The Cancer Genome Atlas
TMA	Tissue Microarray
Trk	Tropomyosin-Related Kinase
TNF	Tumour Necrosis Factor
TRAF	Tumour Necrosis Factor Receptor-Associated Factor

V

VPS10P Vacuolar Protein Sorting 10 Protein

Table of Contents

Declaratio	ns i
Acknowled	dgementsii
List of Pub	blications Included as Part of this Thesisiii
List of Abb	previationsiv
Table of C	ontentsviii
Abstract	
CHAPTER	1 Thesis Overview12
1.1 Int	roduction12
1.2 Air	ns of the study12
1.3 Or	ganisation of the thesis13
CHAPTER	2 Literature Review15
2.1 Ne	rve Dependence: From Regeneration to Cancer
2.1.1	Preface15
2.1.2	Publication16
2.2 Ne	urotrophin family of growth factors and receptors
2.2.1	Nerve growth factor (NGF)
2.2.2	Structure and function of proNGF
2.2.3	Structural and functional characteristics of receptors for proNGF.32
2.2.4	P75 ^{NTR} (p75 neurotrophin receptor)34
2.2.5	Sortilin receptor
2.2.6	TrkA receptor
2.3 NG	GF, proNGF and their receptors in cancer
2.3.1	Breast cancer
2.3.2	Pancreatic cancer40
2.3.3	Melanoma42
2.3.4	Prostate and gastric cancer43

CHAP	ER 3 Nerve fibers infiltrate the tumor microenvironment and are
associ	ated with nerve growth factor production and lymph node invasion
in brea	st cancer45
3.1	Preface45
3.2	Publication46
3.3	Supplemental Files56
CHAP	ER 4 ProNGF is a potential diagnostic biomarker for thyroid cancer
4.1	Preface
4.2	Publication60
4.3	Supplementary Files70
CHAP	TER 5 Neurotrophin Receptors TrkA, p75 ^{NTR} and Sortilin are
	TER 5 Neurotrophin Receptors TrkA, p75 ^{NTR} and Sortilin are sed and Targetable in Thyroid Cancer
Increas	sed and Targetable in Thyroid Cancer71
Increas 5.1	sed and Targetable in Thyroid Cancer
Increas 5.1 5.2 5.3	Sed and Targetable in Thyroid Cancer
5.1 5.2 5.3 CHAPT	sed and Targetable in Thyroid Cancer .71 Preface .71 Publication .72 Supplementary Files .85
Increas 5.1 5.2 5.3 CHAPT Appen	sed and Targetable in Thyroid Cancer 71 Preface 71 Publication 72 Supplementary Files 85 TER 6 General Discussion 89
Increas 5.1 5.2 5.3 CHAPT Appen	sed and Targetable in Thyroid Cancer 71 Preface 71 Publication 72 Supplementary Files 85 TER 6 General Discussion 89 dices 95
Increas 5.1 5.2 5.3 CHAPT Appen A.1	sed and Targetable in Thyroid Cancer 71 Preface 71 Publication 72 Supplementary Files 85 TER 6 General Discussion 89 dices 95 Additional publications supplemental to this thesis 95

Abstract

Infiltration of the tumour microenvironment by nerve fibres, termed cancer neurogenesis, is a relatively understudied feature of human carcinogenesis. Until only recently, perineural invasion (PNI), a process by which cancer cells surround and invade nerves, was thought to be the sole interaction between both tumoural and neuronal populations. PNI has traditionally been associated with clinically advanced tumours, in which it is thought to provide an alternate route for metastasis, generally resulting in a relatively poor prognosis for the patients. Recent studies however have demonstrated that denervation can supress tumour growth and metastasis, suggesting that there is separate interplay between both cancer and neuronal cells, extending far beyond that of PNI. However, what is yet to be fully elucidated in the literature is the molecular mechanism or mediators at play, responsible for facilitating this nerve-cancer cell crosstalk. What has been hypothesised, and since proven in a handful of human cancers, is that trophic factors are released by nerves and are capable of acting on cancer or other cells encompassing the tumour microenvironment. Conversely, cancer cells release neurotrophic factors that are capable of stimulating nerve infiltration or neurogenesis of the tumour. Neurotrophins and their receptors are one such family of neurotrophic factors that are emerging targets in oncology. More specifically, NGF and its precursor protein proNGF, along with their receptors, TrkA, p75^{NTR} and sortilin, have already been implicated in several human cancers, including but not limited to that of the breast, skin (melanoma) and prostate. The overarching aim of this thesis was to develop a greater understanding of the emerging importance of both nerves and neurotrophic growth factors in influencing the growth and dissemination of human cancers. More specifically, this body of work aims to elucidate the extent and role of nerve infiltration within the tumour microenvironment of breast and thyroid cancers, as well as to determine any associations with the expression and function of NGF, proNGF and their receptors, TrkA, p75^{NTR} and sortilin.

In a large cohort of primary breast tumours, we detected neural infiltration using the broad neuronal marker, PGP9.5. Invasive ductal carcinomas had a higher proportion of nerves as compared with that of invasive lobular carcinomas as well

10

as ductal carcinomas in situ. Additionally, the secretion of NGF was detected from a series of breast cancer cell lines, within their conditioned culture media. Coculturing breast cancer cells with that of neuronal-like cells resulted in neurite outgrowth, which was ablated with the use of an NGF blocking-antibody, highlighting its potential role in stimulating breast cancer neurogenesis.

Following this, we looked to further clarify the expression and function of both nerves and neurotrophic growth factors in thyroid cancer. ProNGF expression was analysed by immunohistochemistry in two cohorts of cancer versus benign and normal thyroid tissues. Although innervation of thyroid cancers has not been previously reported, using the neuronal marker PGP9.5 we detected nerves in primary thyroid tumours. In both cohorts, proNGF was found to be overexpressed in thyroid cancer cells, as compared with both thyroid adenomas and normal thyroid tissue. We also demonstrated that proNGF is secreted by anaplastic thyroid cancer cell lines, highlighting its potential as a diagnostic biomarker, both histologically and within that of the blood. Next we looked to define the expression of TrkA, p75^{NTR} and sortilin in thyroid cancer, as well as to determine if targeting these receptors reduced features of aggressiveness. TrkA was found to be more commonly expressed in tumours, where it was found to be associated with lymph node metastasis. In addition, nerves in the tumour microenvironment were positive for TrkA. P75^{NTR} was overexpressed in anaplastic thyroid cancers compared to papillary and follicular subtypes whereas sortilin was overexpressed in all histological subtypes, as compared with adenomas and normal thyroid tissue. Targeting TrkA, p75^{NTR} and sortilin *in vitro* using a pair of anaplastic thyroid cancer cell lines decreased cell survival and features of metastasis (migration and invasion), thus highlighting their potential are novel therapeutic targets in this devastating subtype of thyroid disease. Taken together, the work portrayed in this thesis has provided new evidence highlighting the importance of nerve infiltration in human carcinomas of the breast and thyroid, elucidated a role for NGF as a potential regulator of neurogenesis in the breast tumour microenvironment, as well as implicated NGF, its precursor proNGF and their receptors (TrkA, p75^{NTR}) and sortilin) as novel targets for therapeutic intervention.

PhD Thesis